Scratch and abrasion properties of polyurethane-based micro- and nano-hybrid obturation materials.

نویسندگان

  • Miriam Estevez
  • J Rogelio Rodriguez
  • Susana Vargas
  • J A Guerra
  • Witold Brostow
  • Haley E Hagg Lobland
چکیده

Polyurethane-based micro- and nano-hybrid composites were produced with controlled porosity to be used as obturation materials. In addition to hydroxyapatite (HAp) micro-particles in the composites, two different ceramics particle types were also added: alumina micro-particles and silica nano-particles. Particles of different sizes provide the materials with improved mechanical properties: the use of micro- and nano-particles produces a better packing because the nano-particles fill the interstitial space left by the micro-particles, rendering an improvement in the mechanical properties. The silica and alumina particles provide the materials with appropriate abrasion and scratching properties, while the HAp provides the required bio-acceptance. The polymeric matrix was a mono-component solvent-free polyurethane. The porosity was selected by controlling the chemical reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous hydroxyapatite-based obturation materials for dentistry

New porous biomaterials based on hydroxyapatite (HAp) were designed as obturation materials for dental cavities. Synthetic HAp powder with a particle diameter of 150 m was agglutinated using three different polyurethane monocomponents (rigid, semi-rigid, and flexible), enabling the matching of their properties to those of real teeth. Alumina particles were also added in some cases. Our new hybr...

متن کامل

Investigation of the synergistic effect of titania micro and nanoparticles on the hydrophobic properties of polyurethane composite coating

One of the ways to improve the performance of ceramic insulators in polluted climates is to use polymer coatings reinforced with ceramic particles. The purpose of this study is to compare the effect of adding Titania nanoparticles and Titania micro-nanoparticles on hydrophobic properties of PU. In this method, stearic acid, which is a cheap and environmentally friendly material, was used for su...

متن کامل

Novel wear resistant and low toxicity dental obturation materials

Preparation of new polymer (polyurethane)+ceramic nanohybrids for filling dental cavities is reported. Short curing times (below 10 min) are achieved. Some tribological properties are determined and compared with those of commercial dental materials. The new materials provide scratch resistance as well as good adhesion to dentin and enamel, low toxicity and high chemical resistance; additionall...

متن کامل

Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite

Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to im...

متن کامل

Enhanced of Nano-mechanical Properties of NiTi Alloy by Applied Nanostructured Tantalum Nitride Coating with Magnetron Sputtering method

    Nowadays, suitable protective properties of tantalum nitride coatings, such as hardness, abrasion resistance and high corrosion resistance lead to increasing its application in medical engineering and improving the biological behavior of titanium and its alloys. In this research, nanostructured tantalum nitride coating was applied on the NiTi alloy by magnetron sputtering method. Then, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 2013